Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Bing Li, Yu-Hu Wang, Wen Gu and Xin Liu*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail: liuxin64@nankai.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.005 Å R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 14.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[*N*,*N*,*N'*,*N'*-Tetrakis(benzimidazol-2-ylmethyl)ethane-1,2-diamine]nickel(II) dinitrate methanol solvate

In the title complex, $[Ni(EDTB)](NO_3)_2 \cdot CH_3OH$ [EDTB is N, N, N', N'-tetrakis(benzimidazol-2-ylmethyl)ethane-1,2-diamine, $C_{34}H_{32}N_{10}$], the Ni^{II} ion is coordinated by six N atoms of the EDTB ligand to form a distorted octahedral geometry. The crystal packing is stabilized by intermolecular N $-H \cdot \cdot \cdot O$, N $-H \cdot \cdot \cdot N$ and $O-H \cdot \cdot \cdot O$ hydrogen bonds. Received 31 October 2005 Accepted 29 November 2005 Online 10 December 2005

Comment

Some benzimidazole derivatives can be used as building blocks in the synthesis of model complexes (Ogawa *et al.*, 1998; Liu *et al.*, 2002; Blackburn *et al.*, 1989; Plengea *et al.*, 2003). The hexadentate polyfunctional benzimidazole ligand EDTB [EDTB is N,N,N',N'-tetrakis(2-benzimidazolylmethyl)-1,2ethanediamine] has attracted considerable attention in recent years, and a series of compounds containing this ligand have been reported. Among these, [Mn(EDTB)(OAc)](OAc)--C₂H₅OH (Liao *et al.*, 2001) shows SOD-like activity, while Cu(EDTB)(NO₃)₂·C₂H₅OH (Chen *et al.*, 2004) exhibits catecholase-like activity. As an extension of this work, we have synthesized the title compound, (I), and report its crystal structure here.

The asymmetric unit of (I) consists of an $[Ni(EDTB)]^{2+}$ cation, two NO₃⁻ anions and a methanol molecule (Fig. 1). Selected bond lengths and angles are listed in Table 1. The Ni^{II} ion is six-coordinated by four benzimidazole and two amino N atoms, forming a distorted octahedral geometry. The equatorial plane contains the N atoms of two benzimidazole groups and two amino N atoms, while the axial positions are occupied by the N atoms of the other two benzimidazole groups. The Ni atom is displaced by 0.023 (5) Å from the equatorial plane. The crystal packing is stabilized by intermolecular N-H···O, N-H···N and O-H···O hydrogen bonds (Table 2).

© 2006 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The asymmetric unit of the title compound, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

EDTB was prepared as described previously by Gomez-Romero *et al.* (1990). EDTB (1 mmol) was dissolved in hot methanol (15 ml) and a solution of Ni(NO₃)₂·6H₂O (1 mmol) in water (10 ml) was added dropwise. The mixture was filtered after continuous stirring for 3 h. Violet single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solution at room temperature over a week. Analysis, calculated for $C_{35}H_{36}N_{12}NiO_7$: C 56.55, H 4.34, N 22.61%; found: C 57.46,H 4.52,N 23.02%.

Crystal data

[nI(C ₃₄ H ₃₂ N ₁₀)](NO ₃) ₂ ·CH ₄ O	Z = 2
$M_r = 795.47$	$D_x = 1.452 \text{ Mg m}^{-3}$
Triclinic, P1	Mo $K\alpha$ radiation
a = 11.718 (4) Å	Cell parameters from 875
b = 12.103 (4) Å	reflections
c = 14.528 (5) Å	$\theta = 3.3 - 25.0^{\circ}$
$\alpha = 91.409 \ (5)^{\circ}$	$\mu = 0.60 \text{ mm}^{-1}$
$\beta = 103.988 \ (5)^{\circ}$	T = 293 (2) K
$\gamma = 113.291 \ (5)^{\circ}$	Prism, violet
$V = 1819.6 (10) \text{ Å}^3$	$0.22 \times 0.18 \times 0.14 \text{ mm}$

Data collection

7392 independent reflections
5192 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.026$
$\theta_{\rm max} = 26.4^{\circ}$
$h = -14 \rightarrow 14$
$k = -15 \rightarrow 14$
$l = -18 \rightarrow 17$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.119$ S = 1.027392 reflections 498 parameters H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0602P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.43 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.38 \text{ e} \text{ Å}^{-3}$

Table 1

Selected geometric parameters (Å, °).

Ni1-N1	2.046 (2)	Ni1-N9	2.098 (2)
Ni1-N4	2.094 (2)	Ni1-N6	2.137 (2)
Ni1-N7	2.095 (2)	Ni1-N3	2.186 (2)
N1-Ni1-N4	88.09 (9)	N7-Ni1-N6	78.85 (9)
N1-Ni1-N7	119.12 (9)	N9-Ni1-N6	81.09 (9)
N4-Ni1-N7	92.81 (9)	N1-Ni1-N3	79.18 (9)
N1-Ni1-N9	93.07 (9)	N4-Ni1-N3	80.49 (9)
N4-Ni1-N9	171.40 (8)	N7-Ni1-N3	160.51 (9)
N7-Ni1-N9	94.07 (9)	N9-Ni1-N3	91.35 (8)
N1-Ni1-N6	161.62 (8)	N6-Ni1-N3	83.54 (9)
N4-Ni1-N6	95.20 (9)		

able 2			
Hydrogen-bond	geometry	(Å,	°).

$\overline{D-\mathrm{H}\cdot\cdot\cdot A}$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$N2 - H2 \cdots O6^{i}$	0.86	2.03	2,813 (3)	151
$N2-H2\cdots O5^{i}$	0.86	2.33	3.035 (3)	140
$N2-H2\cdots N12^{i}$	0.86	2.53	3.348 (4)	159
$N5-H5A\cdots O3$	0.86	2.05	2.879 (4)	161
$N5-H5A\cdots O1$	0.86	2.48	3.182 (4)	139
N8-H8···O7 ⁱⁱ	0.86	1.92	2.763 (3)	168
N10-H10···O3 ⁱⁱⁱ	0.86	2.35	3.040 (4)	137
$N10-H10\cdots O4^{iii}$	0.86	2.37	3.063 (3)	139
$O7-H7A\cdots O2^{iv}$	0.82	2.24	3.032 (5)	164
$O7-H7A\cdotsO1^{iv}$	0.82	2.42	3.086 (4)	139

Symmetry codes: (i) x, y+1, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) -x, -y+1, -z+1.

All H atoms were placed in calculated positions, with C-H = 0.93– 0.97 Å, O-H = 0.82 Å and N-H = 0.86 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2$ or 1.5 times U_{eq} (parent atom).

Data collection: *SMART-NT* (Bruker, 1998); cell refinement: *SAINT-NT* (Bruker, 1998); data reduction: *SAINT-NT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-NT* (Bruker, 1998); software used to prepare material for publication: *SHELXTL-NT*.

This work was supported by the National Natural Science Foundation of China (grant No. 20371027) and Tianjin Natural Science Foundation (grant No. 033609211)

References

- Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A. & Zubieta, J. (1989). *Inorg. Chem.* 28, 1349–1357.
- Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL-NT (Version 5.10). Bruker AXS, Madison, Wisconsin, USA.

Chen, Z.-F., Liao, Z.-R., Li, D.-F., Li, W.-K. & Meng, X.-G. (2004). J. Inorg. Biochem. 98, 1315–1318.

Gomez-Romero, P., Witten, E. H., Reiff, W. M. & Jameson, G. B. (1990). *Inorg. Chem.* 29, 5211–5217.

- Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-K. & Zhao, W. (2001). Polyhedron, 20, 2813–2821.
- Liu, C., Yu, S., Li, D., Liao, Z., Sun, X. & Xu, H. (2002). Inorg. Chem. 41, 913–922.
- Ogawa, K., Nakata, K. & Ichikawa, K. (1998). Chem. Lett. 797-798.
- Plengea, T., Dillingerb, R., Santagostinic, L., Casellad, L. & Tuczeka, F. (2003). Z. Anorg. Allg. Chem. 629, 2258–2265.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.