Acta Crystallographica Section E

Structure Reports
 Online
 ISSN 1600-5368
 Bing Li, Yu-Hu Wang, Wen Gu and Xin Liu*

Department of Chemistry, Nankai University, Tianjin 300071, People's Republic of China

Correspondence e-mail:
liuxin64@nankai.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.044$
$w R$ factor $=0.119$
Data-to-parameter ratio $=14.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2006 International Union of Crystallography Printed in Great Britain - all rights reserved

[$N, N, N N^{\prime}, N^{\prime}$-Tetrakis(benzimidazol-2-ylmethyl)-ethane-1,2-diamine]nickel(II) dinitrate methanol solvate

In the title complex, $[\mathrm{Ni}(\mathrm{EDTB})]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{CH}_{3} \mathrm{OH}[\mathrm{EDTB}$ is $N, N, N^{\prime}, N^{\prime}$-tetrakis(benzimidazol-2-ylmethyl)ethane-1,2-diamine, $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{10}$], the $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated by six N atoms of the EDTB ligand to form a distorted octahedral geometry. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Some benzimidazole derivatives can be used as building blocks in the synthesis of model complexes (Ogawa et al., 1998; Liu et al., 2002; Blackburn et al., 1989; Plengea et al., 2003). The hexadentate polyfunctional benzimidazole ligand EDTB [EDTB is $N, N, N^{\prime}, N^{\prime}$-tetrakis(2-benzimidazolylmethyl)-1,2ethanediamine] has attracted considerable attention in recent years, and a series of compounds containing this ligand have been reported. Among these, $[\mathrm{Mn}(\mathrm{EDTB})(\mathrm{OAc})](\mathrm{OAc})$-$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (Liao et al., 2001) shows SOD-like activity, while $\mathrm{Cu}(\mathrm{EDTB})\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ (Chen et al., 2004) exhibits cate-cholase-like activity. As an extension of this work, we have synthesized the title compound, (I), and report its crystal structure here.

The asymmetric unit of (I) consists of an $[\mathrm{Ni}(\text { EDTB })]^{2+}$ cation, two $\mathrm{NO}_{3}{ }^{-}$anions and a methanol molecule (Fig. 1). Selected bond lengths and angles are listed in Table 1. The $\mathrm{Ni}^{\mathrm{II}}$ ion is six-coordinated by four benzimidazole and two amino N atoms, forming a distorted octahedral geometry. The equatorial plane contains the N atoms of two benzimidazole groups and two amino N atoms, while the axial positions are occupied by the N atoms of the other two benzimidazole groups. The Ni atom is displaced by 0.023 (5) \AA from the equatorial plane. The crystal packing is stabilized by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$, $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Received 31 October 2005 Accepted 29 November 2005 Online 10 December 2005

Figure 1
The asymmetric unit of the title compound, with 30% probability displacement ellipsoids. H atoms have been omitted for clarity.

Experimental

EDTB was prepared as described previously by Gomez-Romero et al. (1990). EDTB (1 mmol) was dissolved in hot methanol (15 ml) and a solution of $\mathrm{Ni}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ was added dropwise. The mixture was filtered after continuous stirring for 3 h . Violet single crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of the solution at room temperature over a week. Analysis, calculated for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{~N}_{12} \mathrm{NiO}_{7}$: C 56.55 , H 4.34, N 22.61%; found: C $57.46, \mathrm{H} 4.52, N 23.02 \%$.

Crystal data

$\left[\mathrm{nI}\left(\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{~N}_{10}\right)\right]\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{CH}_{4} \mathrm{O}$
$M_{r}=795.47$
Triclinic, $P \overline{1}$
$a=11.718$ (4) \AA
$b=12.103$ (4) \AA
$c=14.528$ (5) A
$\alpha=91.409(5)^{\circ}$
$\beta=103.988$ (5) ${ }^{\circ}$
$\gamma=113.291(5)^{\circ}$
$V=1819.6(10) \AA^{3}$
$Z=2$
$D_{x}=1.452 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 875
reflections
$\theta=3.3-25.0^{\circ}$
$\mu=0.60 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, violet
$0.22 \times 0.18 \times 0.14 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.878, T_{\text {max }}=0.919$
10574 measured reflections

Refinement

```
Refinement on }\mp@subsup{F}{}{2
R[\mp@subsup{F}{}{2}>2\sigma(\mp@subsup{F}{}{2})]=0.044
wR(F}\mp@subsup{F}{}{2})=0.11
S=1.02
7 3 9 2 \text { reflections}
4 9 8 \text { parameters}
```

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0602 P)^{2}\right]$
> where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.43 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.38 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

Ni1-N1	$2.046(2)$	Ni1-N9	$2.098(2)$
Ni1-N4	$2.094(2)$	Ni1-N6	$2.137(2)$
Ni1-N7	$2.095(2)$	Ni1-N3	$2.186(2)$
N1-Ni1-N4	$88.09(9)$	N7-Ni1-N6	$78.85(9)$
N1-Ni1-N7	$119.12(9)$	N9-Ni1-N6	$81.09(9)$
N4-Ni1-N7	$92.81(9)$	N1-Ni1-N3	$79.18(9)$
N1-Ni1-N9	$93.07(9)$	N4-Ni1-N3	$80.49(9)$
N4-Ni1-N9	$171.40(8)$	N7-Ni1-N3	$160.51(9)$
N7-Ni1-N9	$94.07(9)$	N9-Ni1-N3	$91.35(8)$
N1-Ni1-N6	$161.62(8)$	N6-Ni1-N3	$83.54(9)$
N4-Ni1-N6	$95.20(9)$		

Table 2
Hydrogen-bond geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O}^{\text {i }}$	0.86	2.03	2.813 (3)	151
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 5^{\text {i }}$	0.86	2.33	3.035 (3)	140
N2-H2 ${ }^{\text {a }}$ N12 ${ }^{\text {i }}$	0.86	2.53	3.348 (4)	159
N5-H5A \cdots O3	0.86	2.05	2.879 (4)	161
N5-H5A \cdots O1	0.86	2.48	3.182 (4)	139
N8-H8 \cdots - $7^{7 i}$	0.86	1.92	2.763 (3)	168
N10-H10 . O33 ${ }^{\text {iii }}$	0.86	2.35	3.040 (4)	137
$\mathrm{N} 10-\mathrm{H} 10 \cdots \mathrm{O} 4^{\text {iii }}$	0.86	2.37	3.063 (3)	139
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 2^{\text {iv }}$	0.82	2.24	3.032 (5)	164
$\mathrm{O} 7-\mathrm{H} 7 A \cdots \mathrm{O} 1^{\text {iv }}$	0.82	2.42	3.086 (4)	139

Symmetry codes: (i) $x, y+1, z$; (ii) $x+1, y, z ;$ (iii) $x+1, y+1, z ; \quad$ (iv)
$-x,-y+1,-z+1$.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93-$ $0.97 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$, and included in the final cycles of refinement using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}$ (parent atom).

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-NT (Bruker, 1998); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-NT (Bruker, 1998); software used to prepare material for publication: SHELXTL-NT.

This work was supported by the National Natural Science Foundation of China (grant No. 20371027) and Tianjin Natural Science Foundation (grant No. 033609211)

References

Blackburn, N. J., Strange, R. W., Reedijk, J., Volbeda, A. \& Zubieta, J. (1989). Inorg. Chem. 28, 1349-1357.
Bruker (1998). SMART-NT (Version 5.0), SAINT-NT (Version 5.0) and SHELXTL-NT (Version 5.10). Bruker AXS, Madison, Wisconsin, USA.
Chen, Z.-F., Liao, Z.-R., Li, D.-F., Li, W.-K. \& Meng, X.-G. (2004). J. Inorg. Biochem. 98, 1315-1318.
Gomez-Romero, P., Witten, E. H., Reiff, W. M. \& Jameson, G. B. (1990). Inorg. Chem. 29, 5211-5217.
Liao, Z.-R., Zheng, X.-F., Luo, B.-S., Shen, L.-R., Li, D.-F., Liu, H.-K. \& Zhao, W. (2001). Polyhedron, 20, 2813-2821.

Liu, C., Yu, S., Li, D., Liao, Z., Sun, X. \& Xu, H. (2002). Inorg. Chem. 41, 913922.

Ogawa, K., Nakata, K. \& Ichikawa, K. (1998). Chem. Lett. 797-798.
Plengea, T., Dillingerb, R., Santagostinic, L., Casellad, L. \& Tuczeka, F. (2003). Z. Anorg. Allg. Chem. 629, 2258-2265.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

